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NATTIONAT. AERONAUTICS AND SPACE ADMINISTRATION

TECHNICAL NOTE D-1hk

DETERMINATION OF NONLINEAR PITCHING-MOMENT
CHARACTERISTICS OF AXIALLY SYMMETRIC
MODELS FROM FREE-FLIGHT DATA

By Maurice L. Rasmussen

SUMMARY

An analysis is presented for the pitching and yawing motion of a
symmetrical missile with a nonlinear restoring moment described by two
terms, the first proportional to the resultant angle of attack, and the
second proportional to the cube of the resultant angle. The solutions
to the nonlinear equations of motion for zero damping and constant roll
are found in closed form in terms of the elliptic integrals of the first
and third kinds.

The frequency of the resultant pitching and yawing motion is shown
to be a function of the maximum and minimum resultant amplitudes as well
as the proportionality constants of the cubic restoring moment. The
precession in the system due to the nonlinear restoring moment is also
a function of these parameters. The frequency of the motion is closely
approximated as a linear function of the square of the maximum and minimum
amplitudes over a large part of its range of variation.

A rapid method of estimating the cubic restoring-moment coefficients
from the observed frequency and amplitudes of two independent sets of
free-flight data is developed and demonstrated. The method rests on the
approximate linear relationship of the frequency with the maximum and
minimum amplitudes of motion.

INTRODUCTION

In free-flight range experiments, the aerodynamic forces and moments
acting on a missile are measured by means of very accurate observations
of its motion in flight. This experimental technique requires a knowledge
of the functional dependence of these aerodynamic forces and moments on
the dynamic variables of the motion in order that the solution curves to
the equations of motion may be obtained. The forces and moments are
calculated from the parameters of the solution curves that are fitted
to the motion.




This method of determining the aerodynamic forces and moments of a
missile has called for solution curves which are in closed form. The -
motion of a missile in a free-flight range has thus been traditionally
described by linear equations. Since nonlinear terms arise from both
large angles of yaw and the presence of second or higher order terms in
the aerodynamic moment expansion, the free-flight range technique would
appear to be restricted to missiles that have linear moment systems and
that fly at small angles of yaw.

The linear solutions to the equations of motion, however, can be
well fitted to many motions which possess nonlinear moment systems or
fly at large angles of yaw. This seems to suggest that the parameters
of these linear equations would be the average or "effective" values of A
the coefficients of the parent nonlinear equations. These effective 3
values show a characteristic dependence on the angle of yaw. Thus in 3
order to completely understand the nonlinear motion, as well as to 9
determine the proper moment parameters by experiment, it is desirable
to have an analytical relationship of the dependence of these nonlinear
forces and moments on the dynamic variables of the motion.

Several authors have treated the problem of nonlinear motion.
Zaroodny in reference 1 has treated the special case of circular yawing
motion, and a more general motion for cubic static and Magnus moments
has been considered by Leitmann in reference 2. Canning in reference 3
has demonstrated the analogy between a missile with a nonlinear yawing
moment and a ball rolling in a suitably shaped bowl. The most elegant
treatment of nonlinear motion has been presented by Murphy in references U,
5, and 6. Murphy attacks the problem from the standpoint of a second-
order analytic equation in a complex variable. The Kryloff-Bogoliuboff
techniques (ref. 7) are applied to this second-order analytic equation,
and the results are presented in the form of an "amplitude plane."

The attempts to solve the equations of motion for a missile with a
nonlinear restoring moment have been limited to approximate or numerical
methods. While these methods have proved valuable in the analysis of
nonlinear motions, the exact variation of the parameters of motion is
not known. For the case of zero damping and constant roll, however, the
equations of motion for a symmetrical missile with a cublec yawing moment
may be solved in closed form as a function of the elliptic integrals of
the first and third kinds. The object of this report is to present this
closed form solution. The linear moment also will be shown so that a
comparison may be drawn with the nonlinear cases.

After the equations which relate the moment parameters to the
characteristics of the motion have been derived, the application to two *
sets of free-flight runs from the Ames supersonic free flight wind tunnel
will be demonstrated.
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NOMENCLATURE

reference area

drag coefficient, dgig

normal force

normal-force coefficient, T

rate of change of normal-force coefficient with resultant angle,

Cy
36/5 5 0

restoring moment

restoring-moment coefficient,
qhAl

rate of change of restoring-moment coefficient with resultant

angle, (?Cﬁv

\ CT /

rate of change of restoring-moment cocefficient with time rate

oC
of change of resultant angle parameter, [5(77§§7
0‘ -
g—~>0

rate of change of restoring-moment coefficient with resultant
| 9Cp |
angular velocity parameter, Ug—T————
(eyV)dg o

) Cpy
Magnus moment ccefficient, So
o]

(/) ,

constants of integration

incomplete elliptic integral of the first kind

2
l
gﬁ [CNG - 2Cp - <?E (Cmq + 7Cm6)]

moments of inertia about roll, pitch, and yaw axes, respectively

complete elliptic integral of the first kind

moduli of the elliptic integrals
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u,v,w

axial radius of gyration
transverse radius of gyration

reference length

_& 7k.t—2 %1_1

cubic restoring-moment coefficients, defined by equation (lO)

p2 A
+ —
-Hx . 3
mean value of Mye over a short trajectory 9
projectile mass
Ix .
2 -2 (gyroscopic spin) .

Viy
angular rolling velocity

dynamic pressure, % pv2

2
l
2 [ors - o0 + (&) o

roots of equation (16)

components of linear velocity of missile along x, y, and z
directions

magnitude of missile's velocity

distance along the trajectory

angle of attack

angle of sideslip

Ge—(HJE)x

cosine of angle between missile's axis and trajectory
resultant angle squared, o2

resultant angle between projectile axis and an axis fixed in
space
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0 polar coordinate angle of oscillatory motion, tan™21 %
3 B + ia

Mg Heuman's lambda function

A wave length

N1,N2 arguments of Heuman's lambda function

II elliptic integral of the third kind
p air density
o resultant angle of attack, (a? + B2)1/2
do minimm resultant angle
Om maximum resultant angle
T re
P, ¥ arguments of the elliptic integrals
w frequency, radians per unit length along trajectory
()" derivative of quantity with respect to x
ANALYSIS

Equations of Motion

The general equations for a symmetrical missile with zero trim angle
have been derived by Murphy in reference 4. The angles of attack o and B
are represented by the ratios of their respective transverse component of
velocity to the resultant velocity, that is, a = w/V and B = v/V. These
values approach the exact values for small angles. Consider now the
homogeneous second-order analytic equation of a complex variable for a
symmetrical missile in a nonrolling coordinate system (from ref. 6):

g"+<H--77—'-iP>§'—(M+iPT)§=o (1)




where

3 B+ ia

2
H %\1 i:CNU - 2Cp - <k_zt (Cmg + 7Cma)]

pAZ -2 Cm
M _25<7k‘t T

2
oh [ _Q
T o CNg Cp + 7 T Cmpd
P pIx
V Iy
Iy . .
ky . transverse radius of gyraticn
Ix
kg - » @axial radius of gyration
Y cosine of angle between missile's axis and trajectory
v dE
. dx

Assume now, for the purposes of this paper, that the geometric nonline-
arities are zero; that is, the flight path angle is small enough to
neglect so that the values of 7 and its derivative become 7 = 1

and 7' = O.

After the polar transformation is made,
t = 0el? = g(cos 6 + 1 sin @)
where o2 = o + B2, and the real and imaginary parts are separated,

equation (1) is transformed into a fourth order system of equations of
real variables.l

IMembers of the Ames Research Center staff have questioned the rep-
resentation of the damping moment in equations (2), principally in equa-
tion (2b). That equation (2b) may not be correct may be seen by consid-
ering purely circular motion (o = constant, o' = O). In this case, the
motion being steady, there should be no evidence of the unsteady deriv-
ative Cpg, yet such terms remain. However, since the present analysis
is restricted to zero damping or to small damping over a short trajectory,
and since the treatment of the damping is only approximate, principal
attention being given to the static moment, this question will not affect
the results of this analysis in any important way.

O ww =
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o" - 06" + Ho' + PoB' - Mg = O (2a)

20'0' + g6" + Ho6' - Po! - PTg = O (2b)

The variables ¢ and 6 are shown in sketch (a); both are functions of
X, the distance along the flight path. a

For a completely nonlinear system, all
of the coefficients H, P, M, and T would
be considered functions of o¢2. This paper

will consider only M +to be a function of
02 and the remaining coefficients to be

constant. Moreover, the coefficient T

will be considered negligible, that is,
T = O, This implies that the roll rate,

P, will not be large. —

Equation (2b) may be integrated to
express 6 as a function of x and oR.
Equation (2b) multiplied by o (with Sketch (2)
T = 0) is

028" + (200" + Ho2)6! = Poo! (3)
or

Hx
3 (ozellXgr) - P do® (1)

wiiich may be integrated once to tzke the form

_P 1 Iis c
o =2 caeﬂxfe X302 + — (5)

where c¢ is a constant of integration. After the integral in equation
(5) has been integrated by parts, 8' becomes

(6)

9':2—@ foeede.x+

2 2 el Hx

o2e

By integration once more between the limits 6 and 65, and x and X,
where G(XO) = By, the expression for the polar angle 6 1is obtained

_ P % - HP G(x)dx x dx
6 - 8, ( Xo) - f_czp +cf_.__ (7)

Xo o2elX

where G(x) =\/F02eHde.




The amount of precession in a system can be found from equation (7)
as will be shown later. For this reason, equation (7) will ve referred
to as the precession equation in later parts of this report.

The crux of this report will lie in the solution of equation (2a).
Equation (2a) may be reduced to only one dependent variable, o, by the
substitution of equation (6). Complications in the solution of equa-
tion (2a) may be reduced by removing the integral term in the equation
for 6', equation (6). This may be accomplished by setting H = O; that
is, the damping is zero.

Yawing Motion With Constant Roll and No Damping

When the damping, H, has been set equal to zero, equation (6) may
be expressed

o' = (8)

rold

c
+ =

=
and upon substitution into equation (2a), the equation for o becomes

w , P2 c2 0 (9)

+ - Mo -—=
T

If the yawing-moment coefficient is represented by the sum of a linear
and a cubic term, then M may be expressed as

M= -M, - 2M;0° (10)
and equation (9) now reads
"o_ 0_2_ _ P2
o == <¥o + 75) o - 2M;0°8 (11)

When o" has been rewritten as

2
c,ui@:ggi@:;_d_(@)
dx dx dx do dx 2 do

equation (11) assumes the following form:

2
d (do 2¢c2 —
L) -2 - emo - nee (12)

w

Vww s
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where My = My + P2/4 > 0 1is always satisfied for statically stable

missiles, and is the criterion for proper spin stabilization for statically

unstable missiles.

Equation (12) may now be integrated once to give

< = - — = Moo - Mao?* + ¢ (13)

where c¢; 1s a constant of integration. The constant c¢; may be
evaluated from the boundary condition that o = oy 1s a maximum at
do/dx = O. Thus

cy = <2 4 Mooy® + Myopt (1)
onP

When both sides of equation (13) have been multiplied by o2, the
equation becomes

2
%(%{'—2) = —02 + c302 - My0% - My0® (15)

and upon the substitution € = ¢2, assumes the form

2
% (%E = —c2 + c1€ - Mye2 - Mye® (16)

The square root may now be taken of both sides of equation (16) and
the variables separated. Alter integration the solution would be in the
form of an elliptic integral. Before the integral can be put in standard
form, however, there are several points to clear up concernlng the con-
tinuity of de/dx. The quantity (de/dx)?® is defined (eq. (16)) as a
cubic equation in €, and, having at least one real root, will take on
both positive and negatlve values, depending upon the value of e. It
is necessary, then, to define the domain of € so that (de/dx)® > O,
or, in other words, so that de/dx is real. This may be accompllshed
by examining the roots of equation (16); that is, the maximum and minimum

values of € = ¢2. The roots of equation (16) are .

—\2
1 ﬂb Mo b2
te = 5 |- <0’m2 + W]) +K0m2 + T/[—]> + Mlgm2 B (17)
iy AN
)-l» =
(Umz " M—J> ) j(ama * M—J) ¥ MlZmZ

rf.
W
1l
oI
L




O ww P

11

Case 1: A yawing moment that grows faster than a linear moment.-
For this case both My and M; are positive. From equations (17) it
can be seen that 1tz > O and tp > 0. The quantity (de/dx)Z assumes
positive or negative values in the following intervals and is shown in
sketch (b).

2
5153) >0 for -0 < € < t3

dx
2
(%i) <0 for tsz<e<ts

2
<%——)€> >0 for te < e <tz

2
de
(d_x <0 for t1 <e<w
2

de de
(3 '

~1 . \ | ~1

Sketch (b)

The domain of € for continuous oscillatory motion will be
to <€ <t3: € =11 = o2 will be the maximum yaw angle squared, and
€ =ty = 0'02 will represent the square of the minimum yaw angle. With
this in mind equation (16) may now be integrated.

Taking the positive square root of equation (16), separating the
variables, and integrating between the limits € and tz, and x and x,,
where x(tz) = %t

€
oo, o f dey (236)
= a
2N M1 J g, /-%—2+%61—Mb49-612—€1
1 1 1

where
M; >0
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Equaetion (23a) may be written in terms of ti, tz, and ts,

_ = 1 € deq (23b)
* XO Emﬁa «/(tl - el)(el - t2)(€l - ts)

where
tp 2€2t2202> 13

The integral in eguation (23p) may be transformed into an elliptic
integral of the first kind by the transformation (eg. 235.00, ref. 8)

O ww

. tl - t3 € - to
= ol
sin @ /tl - ts € - t3 ( )

Equation (23b) is thus transformed into

X = X

= 1 fq) chl - F((P’kl) (25)
° M1 Jt; - tavo ﬁ - k;2sin2p; M1 B - ta .

where P(¢,k;) is an elliptic integral of the first kind

g2 = ta- e . %® - 0%
ti - ta oy - t3

tl—tae-‘tg

sin =
¢ ty - t2 € - 13

Although equation (25) is the exact solution for equation (16) for
€ = 02, it is actually in an inverse form; that is, x is written as a
function of €, rather than € as a function of x. However, the Jacobian
elliptic functions can be used to express € as a function of x.

By means of the Jacobian elliptic functions described in reference 8,
equation (25) may be inverted to read

am[JM—lmu-xo)}cp (26)

on [P VT (- %) | = sin 0 (27)
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where am and sn are the tabulated Jacobian elliptic functions. From
equation (24), € may be written as a function of @

c = b2 - t3k12sin2 o (28)
1 - k;%sin?9

and € becomes an explicit function of x by the use of the elliptic
function (27).

te - t3k125n2[~/m-. Jtr - ta(x - XO):I

€ = 02 (29)

1- klesna[\/ﬁ; Nt1 - ts(x‘xo)]

The quarter wave length of the motion can be found when ¢ = 1r/2°
The value of (x - X,) is then equal to 1/4 the wave length, (x - xo) = AMb,
and from equation (25)

=T K(ky) (30)
M1 Nt1 - t3

1>

wvhere K(k;) is a complete elliptic integral of the first kind.

The wave length, A, is now seen to be a function of ti, tz, t3, Mo,
and My from equations (30) and (19). Equation (19) is rewritten here as

ta (. 02 . My \ (31)

AL K(ky) <002 My
My i Om — Gy o ’ Myo2 (32)
T T,

Equation (32) is plotted in figure 1 and shows the dependency of the wave
length on oy, 0, Mo, and M.

The remaining problem in this case is to express the precession
equation (7) in terms of analytical functions. For H = O equation (7)
becomes

X~Xo
00 =L lx-mo) e [ Ao x) (33)
o]
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This equation may also be written as

6 -6, =1 (x-x) + cfcpm(dx/i;”)dcpl (34)
(6]

From equation (25), dx/d¢ may be expressed as

dx - - = (35)
do M7 JEL - T3 W1 - k312sin2¢

and by use of equation (28), the following integral may be evaluated:

I - f“’ (ax/a@)agy _ 1 f P (1 - ki2sin®qy)dqy
o= t Jt1 = %
o ZN/M_J-_ ta 370 (l - %:—3- klzsinzCPl \/1 - klzsinz%_
2

(36)

After a small amount of algebraic manipulation, this integral becomes

dQy

®

1 - :‘tt’;—_z k12Sin2(Pl '\[l - klzsinchl

P
. f 491 (37)
o W1 - kq2sin2g;
The integral
o
H(CP)HZ)kJ.) =f 4% (38)

© (1 - psin®@1) W1 - k;2sing;

is Legendre's form of the elliptic integral of the third kind. With the
use of equation (25), the precession equation (34) may be expressed

= P(x - S(x -
6 - 6, = 5(x - ) + tB(x o)

e (& - (e 25 )
+Jp{_lm<t2 T o, 712} 1 (39)

where 712 = tz/ts.

O ww b
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The constant c¢2 is defined by equation (22a) and is written here
as

c® = 0,20,2 (02 + 0,2)My + My020,2 (40)
and ts is defined by equation (19).

The polar angle 6 is thus defined as a function of the elliptic
integral of the third kind and a linear function of x. The elliptic
integral of the third kind also arises in the analysis of the dynamics
of the top, gyroscope, and spherical pendulum, which are analogous to
the motion of a missile with a nonlinear yawing moment.

Case 2: A yawing moment that grows slower than a linear moment.-
In the case where the moment grows slower than a linear moment, the
coefficients My and M; are restricted to the values My > 0 and M; < O.
Moreover, if the motion is to be oscillatory, then d2¢/dx® < 0, and,
from equation (11),

c2 —

- - -2 2 <0 L1
ot Mo M; o (b1)

or, since M < 0 and ¢2 = 0202 [(op® + 0o2)My + Mo ]

2
_ 2o_(1+ 30—2> -2
Mo | oo Omi (k2)
Mj on® 0o 1
ol

To determine the domain of € or, in other words, the range of ¢
for which de/dx is a continuous function, it remains to resolve the
relative magnitudes of +tj, tz, and ts. From equation (21) it can be
seen that tztz > 0 since t; > 0. From the inequality (42) and
equation (19), the sum of 1tz and ts is

ta + t3 > t;
so that both tp and tz are positive. By perusing equations (17), it

can be seen that tz > tz. Now since t; = op2 1is the maximum yaw angle
squared, then tz = o4 is chosen as the minimum yaw angle squared, so
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that for Case 2, +ty >tz >tz > 0. The term (de/dx)® assumes positive
or negative values in these intervals and is shown in sketch (c).

<><O for -0 < € < tg3

<>>O for ta < e <ty

<><O for ty < e <ty

A
< > >0 for te < € < 3
3
. 9
de de
(30 FTe
‘ -
Tl:o'mz
/”—‘EJ ¢ PN c
2 |~
/ t5= 02 t, ty t, ty
Sketch (c)

The quantity de/dx will now be continuous in the interval
tg < € <t;, and in this range the motion will be oscillatory. The motion
will become less and less stable as the value of t3 = o approaches
the value of ts. At the point ti1 = tp the missile will be in a state
of trim. When € > tp, then the motion will be unstable and the missile
will overturn.

The same procedure may now be applied in integrating equation (16)
as was done in Case 1. For Case 2 the limits of integration are €
and ts, and x and x, (where =x(t3) = x5),

1 € del
X - XO = —— (h'3)
20 -MiVig f(t1 - €1) (2 - €1) (€1 - t3)

where -M;p > 0 and tp > t1 2 € > t3 > O,




]
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This integral may be transformed into the form of an elliptic integral
of the first kind by the transformation (ref. 8, eq. 233.00)

ty - ts
and equation (43) becomes
X -~ Xg = 1 F(¥,kz) (45)
N-Miytz - ta
where
k22 = 51 - t3
ta - ts
sin \l; = :_.e;tﬁ
Nt ta
and

2 =

to = - <0m? + 05,2 + %é>

Equation (45) may be inverted to the form of the Jacobian elliptic
functions so that V becomes a function of x.

and from equation (19)

= e [ T o - ) | (16)
sin ¥ = sn [J;Ml Ntz - 0p3(x - Xo)] (L7)

The square of the resultant angle may be expressed as a function of
¥ from equation (L44)

€ =tz + (t; - ta)sin®y (48)

or

=

€ = 052 + (on® - 002)5n2 [J—Ml‘JtZ - 02 (x - XO)J (49)
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Returning to equation (45), one fourth of the wave length, A/4, may

be determined by setting @ = n/2: -
Ao = K(kz) (50)
by JE2 - 002

where K(ks) is the complete elliptic integral of the first kind. As 1in
Case 1, A is a function of oy, 0y, and Mb/Ml, and may be represented
graphically when equation (50) is put into the dimensionless form

m‘;%gm=_£(_k_2)_

te  0o% A
ty 0'm2 3
3
—_ 9
A 0,2 M,
J-M1 2 om =G <f__ —2 1
1y m= G253 Myo® (51) )

Equation (51) is shown in figure 2.

The equation for the polar angle 6 may now be evaluated. From
equation (45) dx/d¥ becomes

& - & = (52)

¥ My Wtz - 002 N1 - k22sin?y

and substituting equations (52) and (48) into equation (7) for H = 0, the
expression for 6 becomes

W
s
P (ax/ay)dyy
R AT
o mx) re
g - 60 = g— (X - XO) >
. . f“‘ dvy
0'02\/"M1'\]t2 - 0p2VYo0 [l _ < - an>sj_n21,lfl]\/l - kgzsinzll,rl
Oo J
(53)

and noting that
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then

9—90=§(x—xo)+ (54)

s~ 8 s
3
oA Mnftz - o 72

where Il is Legendre's form of the elliptic integral of the third kind and

y22 = ta/ts - t2. The constant c¢® may be expressed from equation (23a)
and is identical with the value of c2 for Case 1.

c® = o003 (o + 652)My + MoopZ0p®

Case 3: An initially unstable moment which becomes stable with
increasing yaw angle.- In Case 3 the linear coefficient M, is considered
to be nonrestoring, Mo < 0, and the nonlinear coefficient M; to be
restoring, My > O. As in Case 1, it can be seen from equations (17) that
t1 > te > 0 > tg. The domain of ¢ for continuity will lie in the
interval +tp 2 € > t; and the solution of this case will have exactly
the same form as Case 1. The difference will 1lie in the magnitude of +tg3.

In Case 3, from expression (19), ts is bounded by
ty + ta > -tz >0 (55)
whereas in Case 1,
—tg > t; 1 t2 >0 (56)

Thus the values of the modulus k32 will be much larger for Case 3
than for Case 1. This will greatly affect the value of the elliptic
integral of the first kind. The value of +tp/ts will also be greater
for Case 3 than Case 1 and will have a large effect on the elliptic
integral of the third kind in the equation for the polar arngle 6.

The equations for the motion are the same as Case 1 and are listed
here as

X - %o = = F(p,ky)

«/M_]_'\/(Iz-'t3

where




20

2 _ 5.2
Um - ts
2 2
. om= - t -
sin @ = mé 32 € = 9o
Om- - 0o° € - ts
tg = -<om2 + 052 + ﬂo)
1

002 + op2 > -tz >0

The equation for the polar angle is

6 - 65 = g (x - x0) + %% (x - xo)

2
s e )
My Jop= - ta ‘%0 71

where [] is the elliptic integral of the third kind and 7,2 = 0,2/ts.

The motion due to a nonlinear pitching moment can be described by
the use of elliptic integrals of the first and third kinds and by the use
of the Jacobian elliptic functions. It would be interesting to compare
these solutions with the characteristic sine solutions of a linear analysis.

Linear yawing moment.- When the yawing moment is linear, the coeffi-
cients WM, and My are M, >0 and M; = O. Equation (16) vecomes, for the

linear case,
2 @
1 (de) W W
¥ \ax/ —c® <§;§ + Mbomé> € - Moe? (57)

The zeroes of equation (57) occur at

(58)
tg = =22
2 W02

and by use of the value of c¢2 from equation (LO) with M, = 0, t2
becomes tz = 0p,2. Equation (57) may be directly integrated as the

W ww >
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nonlinear cases to give

€
1 de
X-X =3 = (59)
2/—02 + <£ + ﬁo°m2> €1 — I\—/Ioelg
o2
which has the value
2
2we - é;E + w20mé>
X - X5 = é; sin~1 - g (60)
M/sz + wop? - LeBw?
Om
and may be simplified to the following equation:
€ = (o - 002)sin®uw(x - x5) + 062 (61)
where w2 = M,.
The frequency for the linear case is
W = ﬁ (62)

A

and is a constant. The expression for the polar angle 6 may be deter-
mined from the precession equation (7) with H = O by substituting
equation (6Al) into the integral.

x
9—90=_P.(X—XO)+Cf dxl
2 Xo 002 + (op2 - 052)sin2w(xy - %o)

This integral may be integrated directly to give

9—90=§(X-x0)+6'0.—:;1'%tan—1 [%—’-;‘tanw(x-ifo)] (63)

and from equation (40), ¢ = wopoy, So that the final expression is
8 - 6y = g (x - x5) + tan™t [%@ tan w(x - xo)] (64)
o

The linear analysis thus gives the results in the form of the familiar
circular functions, sine and arctan.
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Yawing Motion With Small Damping
Over a Short Trajectory

In the study of the motion of a missile in a free-flight range, the
presence of damping may be an important factor in the determination of
the static stability parameters. In the case of a free-flight range, the
trajectory may be short, and several approximations may thus be made to
adapt the damping factor to analysis for a short trajectory.2

Consider now equation (6) for 01:

This expression must be substituted into equation (2a) in order to find

a solution for the frequency. The main difficulty in the solution for
damping in the system is due to the presence of the integral term in
equation (6). The argument of this integral is always positive, and
hence the magnitude of the integral will increase as the distance along
the trajectory increases. The coefficient of this integral, HP/2, how-
ever, will in general be a small number, so that the integral term will
be negligible at the beginning of the trajectory. If the damping is
small, |H| << 1, and the trajectory is considered to be less than one
wave length long, then the integral term in equation (6) may be neglected.

Consider now equation (6) to be

or =L + < (65)

for small damping and a short trajectory, and substitute this equation
into equation (2a) to get

0"=3C—ZI‘I}(_HU'+<M_TG (66)
gee

When M 1is expressed as M = -M, - 2M;02, equation (66) becomes

g" = ;gg—z—}fx- - Ho' - <MO + % g - 2M10'3 (67)

2The question of damping mentioned in connection with equations (2a)
and (2b) should be kept in mind at this point. The constant damping
coefficient H will represent the damping of a system when the damping
is small or when the motion is nearly planar and when the value of Cmé
is not a dominant part of the value of H.

YN P s
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It is known from linear considerations that the damping affects the
amplitude in exponential form. The following transformation will thus
be made

o= Fe—Hx/z

and equation (67) may be expressed in terms of T
c2 R ~Hxr3
rm =< - Y I - 2M;e T (68)

where

m=%+§

Equation (68) is now in the same form as equation (9) for zero damping

except for the exponential factor e"HX which is a coefficient of IS,
This factor will have the apparent effect of changing the value of M; as
the distance along the trajectory increases. Thus the frequency should be
expected to vary along the trajectory. This should also be expected to
happen since the amplitude of motion is changing.

When the following expression is used,

12 (@)

equation (68) may be integrated once to obtain

2

where cp is the constant of integration. The integral in equation (69)
may be integrated by parts so that

LM, f eHxr3ar = Mye~HXr? 4 mm, f rte Mgy (70)

As before, for small damping (|H| << 1) and a short trajectory, the integral
term on the right-hand side of equation (70) will be considered negligible
compared to the integrated term which precedes it. Furthermore, the vari-

-Hx

ation of the factor Me over a short trajectory for small damping will
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be small, so that the factor Mle‘HX can be replaced by a mean factor

ﬁl = M]_e‘Hx which is a mean value over the trajectory. With these con-
siderations, equation (69) may be replaced by

2
<3_I‘D=—;_§—<NO-:H;->[2—M1F4+02 (71)

This equation has the same form as the equation for constant roll and
zero damping, equation (13), and it may be solved in the same manner.

One important consequence will be suffered by replacing Mle—Hx by
the mean factor M;. The main effect of M; on the motion is on the
magnitude of the wave length. When Mle‘Hx is replaced by the constant
My, the wave length will be restricted to a constant mean value of the
trajectory, and only the amplitude o¢ will vary. For small damping,
however, the change in frequency of motion will be small, and the effect
will be negligible over a short trajectory.

Equation (71) may now be solved by using the substitution ”=r
and using the results of the section on nonlinear motion for zero damping
and constant roll. This may be done by replacing om by I'm, 0o by o,
and € by T, and using the same derived expressions for the special cases.
The results will be then that the amplitude of motion will vary exponen-
tially, and the nonlinear coefficient will assume a mean value M.

DISCUSSION OF ANALYSIS

The relations governing a nonlinear motion have been derived for a
symmetrical missile with four different cases of a cubic yawing moment.
Several important characteristics of the motion can now be examined in
detail.

The Frequency of Motion

The frequency of oscillation of a misgile is an important parameter
in the determination of the coefficients, My and M;, from free-flight
data. The frequency of the motion is defined as

2%

~ (72)

We =

where A 1is the wave length. The subscript e is used so that equa-
tion (72) may also be used as the effective frequency of a linear motion.
Thus an effective linear value may be calculated from the equation

O ww >
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W2 = we? = gzk‘\éz Chge (73)

where Cmg, 1s that constant value of Cmy, Wwhich would give the same

frequency in a linear system as would occur in the nonlinear system.
Equation (72) may now be represented as a function of op, 0y, My, and My
by utilizing the equations for K/h for the three nonlinear cases. For
Case 1, equation (30) may be substituted into equation (T2) to give

S By b1 -t
A2 b T KB (ky)

We

This equation may be written in dimensionless form as

we? _ © Mioy® 1 - (ta/ti)

IR T8 K2 (kq)
When cguation (19) for ta 1is used, this equation becomes
M1 0p2 ( o
2 = 2+ —=w/+ 1
wem ™ Mo I (74)
M, ¥ K2(k)
where
Maor® (7 96)
2 Mo N\ Y~
k'l = > >
g
Mom™ (5 —9%> + 1
My Om

Equation (74) is plotted in figure 3. The frequency parameter, we2/M,,

is thus seen to be a function of the dimensionless parameters obz/om?

and Myop®/Mp. It may be noticed from figure 3, that in spite of the
nonlinear motion, these curves appear to be nearly straight lines. This
would suggest that if equation (74) were expanded in a series, it could

be adequately approximated by the first linear terms. Thus if the complete
elliptic integral of the first kind is expanded in a series and divided
term by term into equation ('74), the first two terms of the resulting
series give

2
we® = My + % (l + Eo_2>Mle2 (75)

Om

The details of this series expansion are shown in the appendix. It can
be seen from the comparison of equation (75) with figure 3 that the
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approximation is very accurate for values of ooz/om? near unity. How-
ever, for obz/om? near zero, the equation for we2 would approach the

value
2 2% 062 2
=My + 1Mk {1 + __2>Mlom (76)

The difference between equations (76) and (75), however, is small.

An eguation for the frequency for Case 2 can be derived from equa-
tion (50) in a manner analogous to that of Case 1. This equation is

LD

Kz(ka)

. (-2
Ceda)

Equation (77) is plotted in figure 4. As in Cases 1 and 3, these curves
are nearly linear for most of their length and deviate from linearity at
the smaller values of wg2/My. The curves in figure 4 can be approximated
for the linear portion by the expression

(77)

'ﬁo

where

ko

This expression may be justified graphically from figure 4 and is also
obtained by retaining the first two terms of the series expansion shown
in the appendix.

Case 3 has essentially the same solution as Case 1, except that

M, < 0. Equation (74) will still apply, but will be placed in a more
convenient form when multiplied by Mo/Mlcm + Thus, for Case 3

s —
<% + ob.> + o =
I

K*(k1)

(78)

where

Vww =

’
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n
=1

052
- -
k12 = p -
[+
<2 + La> s o =
O M]_O'm

Equation (78) is plotted in figure 5. The frequency wea is plotted as

a function of Mb/Mlcm? for Case 3 rather than Mlom?/Mo as in Case 1
so that the special case of Mo = 0 could be represented for Case 3. In
addition, Mo/Mlom? has a limited value as is shown in figure 5.

The curves for equation (78) in figure 5 are again shown to be nearly
linear except at the small values of we2?/Myop2. Equation (75) may then
be used as an approximation for the linear portion of the curves. Equa-
tion (75) gives a close approximation for values of coz/om? greater than
1/2. For values of 0p2/oy2 near zero, the linear portion of the curve
can be more accurately defined as

w2=llo7ﬁo+lhh(l+ﬁ>M02 (79)
e - 10 L ) 10m

Equations analogous to equation (79) could be determined for intermediate
values of 0,2/on® by calculating the curves from equation (78) and then
approximating the slope of the linear portion of the curve by graphical
means.

Expressions of_the form of equation (75) will be very valuable in
the evaluation of My and M; from experimental data. The application
of these relations will be demonstrated in a later section.

Angular Motion in the -3 Plane and Precession

The resultant angle o of the polar coordinates of the pitching and
yawing motion, o and 6, has been discussed, and attention will now be
turned to the polar angle 6, which is defined in general by equation (7),
and in particular for Cases 1-U by equations (39), (54), and (64). In
this section, the four cases for zero damping will be analyzed.

The general expression for the polar rotation is given by equa-
tion (33) and is written here as

X~Xo alx - %)

e - 90 = g(x - Xo) + Umoo J(Umz + Ooa)Ml + Hof 02

o}

(80)
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The main effect of the roll, P, may be seen from this equation. The
effect of P 1is seen to be linear with respect to the distance along the
trajectory (x - xo). The roll will thus present little difficulty in the
analysis, and the main interest will be devoted to the integral term in
the polar angle equation. In the remainder of this section, P will be
considered zero.

The simplest case of polar motion is represented by the linear yawing
moment, and the polar angle is expressed by equation (6M4).

8 - 6y = tan_l[%% tan w(x - xo)]

Comparison of this equation with equation (61) shows that 6 - 65
is exactly in phase with the motion of the resultant angie o¢. The amount
of precession in the system is thus zero.

In order to study the amount of precession in the three nonlinear
cases, it will be convenient to study the amount of polar rotation for a
quarter period of pitching and yawing motion. In this way the elliptic
integrals of the third kind will be complete, and may be evaluated easily
from tables.

Consider now the polar rotation for Case 1, where the yawing moment

grows faster than a linear moment. This relation is given by equation (39)

e_eo=?°-(x—xo)+ = (12-%)11(%1(—1-;:1!1)
2 WMpor® - tg N9 71
vhere TI(®, k12/712, ki) is an elliptic integral of the third kind

c2

o202 [(om® + 0o2)My + Mol

ts = - cm2+002+ﬁM%>

g2 ~ 002 0n2
k12 = —“T— and 712 = _O__
o - ta ts

For a quarter period in the yawing frequency, ¢ equals n/é, and the
above equation may be expressed with the help of equation (30) as

2
6 - 6, = c [K(k)+<£%_ >H L3 ,k>:l (81)
T teloE ot L N2 7277

where [I(k1%/712, ki) is a complete elliptic integral of the third kind.

O ww

»
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The complete elliptic integral of the third kind may be expressed as
a function of Heuman's lambda function, A(7,k), which is a tabulated
function. The complete elliptic integral of the third kind may be related
to the lambda function by equation 410.01 in reference 8:

k12K (k
M(ay?,ky) = —2k02)
k32 - oy

a'leO(Tll’kl) (82)
Va2 (1 - 232) (a2 - k,2)

where K(k;) is a complete elliptic integral of the first kind, and

2
sin n = /——
0.12 - klz

when equetion (82) is substituted into equation (81) and ¢ and ts are
expressed as functions of o2, 0,2, and Mo/M1, equation (81) reduces to
the simple form

om - 6o = 3 A(n1,ka) (83)

vhere A, (n1,k1) is Heuman's lambda function, and

My om> 0.2
— o
Mo <} + o + 1

M; om2 < Ubé>
— l1+2 ——%)+ 1
Mo O

Equation (83) is shown graphically in figure 6. If bere were no precession
in the system, 6, - 6, would be identically equal to 90 The amount of
precession in the system due to the nonlinearities in the yawing moment will
be the difference between 90 and the actual value of 6y - 65. The polar
rotation for a quarter period, (6p - 6,), will always be less than 90° for
Case 1. In addition, it can be seen that the amount of precession varies
substantially with the value of 02/0p2.

sin 9 =

Now consider Case 2 in which the yawing moment grows slower than a
linear moment. The polar rotation for Case 2 is represented by equa-
tion (5&) and is expressed here for zero roll as

8 - 6,

c ko2

2
e aE \E
UO —Mltg—UO Y2

o [ T2 ( ko? >
UO 'Ea _ 0’02H ‘l’} 722 2 k2 (8,'{')
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where

= _ 002
72% = ———
002 - to

The polar rotation for a quarter period of yaw-angle frequency may
be determined at ¥ = n/2, so that

- 9m /__te ko2 4>
Om = 0o = EA ta - 002 II(;Zz ) e (92)

where II(kp2/722, ko) is a complete elliptic integral of the third kind.

The complete elliptic integral of the third kind may be placed in
the form of Heuman's lambda function by equation 411.01 in reference 8.

I(cp2,ke2) = K(ka) + X weZ(As - 1)
1-a? Z (1 - a?) (% - k)
where
Ny = No(n2,ke)
and
sin 1ng = L

N1 -~ 022
Upon substitution of this relationship_into equation (84) and noting

that ap2 = kp2/752 and to = ~(op® + 002 + Mo/M;), the resulting equation
may be written as

2 2
(D)
— Sm Mo Ot

7
6 - 6o = o2 — — K(k2) + 3(1 - ) (86)
1-|- 2= <# +2 49;>
Mo O
where
sin ng = %ﬁ

and

W ww >
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e
o _ o2 M .
2 =
1- <— Mi°m2> (1 +2 Efﬁ>
Mo O™

Figure 7 illustrates equation (86).

Case 2 has two trim points for planar motion, and these points occur
at o2 = 0 and o2 = -My/2M;. The second trim angle in this case, however,
is unstable. Once the yaw angle has exceeded o = —MO/EMI, the moment
will cease to be restoring and the missile will overturn. Moreover, once
om? has exceeded the value o2 = —Mb/3Ml, a precarious type of stability
will exist, depending upon the value of the minimum yaw angle. This may
be seen from figure 7 where the curve for circular motion, 0o2/op2 = 1,
goes to infinity at -Myom®/Mo = 1/3.

Figure 7 indicates that circular motion for o2 > - Mo/3Ml may not
exist, but must have an elliptical nature, where the ratio of maximum and
minimum yaw angles is restricted to the values shown in figure 7. The

minimum yaw angle is limited to the value 0o < - Mo/3M;.

The equations for Case 3 (an initially unstable yawing moment which
becomes more stable with increasing yaw angle) will have a form similar
to that of Case 1. The difference in the equations, of course, is that
the parameter Mlcm?/Mb is negative. The value of 6p - 65 for Case 3
will be expressed by equation (83).

O - 6 = g As(na,ka)

where =
02
)
. Oy’ M; ony
sin Ty =
1 20'02 < -MO>
Om My o>
and
o,
1- =
K 2 = Om

The above expressions are plotted in figure 8 and show curves that are
characteristically different from Case 1. The important factor in Case 3
is that a state of planar motion may exist in which the minimum yaw
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angle, o,, is different from zero. This particular motion may be studied
by examining the coefficient ¢ of the integral term in equation (33).
The value of c¢2 is

c® = 05202 [(op2 + 0o2)My + Mol

For planar motion, c¢® is equal to O, and the obvious case occurs at
0, = O. However, ¢ may also vanish at the point where

_FIO =l+io_2.
My O Oy

At these values of -Mg/Miom®, 6m - 8o becomes zero, as is shown in

figure 8. This type of planar motion may occur because there are two trim
points for Case 3. These points exist where o2 = 0 and o2 = -My/2M;

and are the values of yaw for which the yawing moment is zero. Again, as
in Case 1, 6y - 6, is less than 90°.

APPLICATION OF THEORY TO DATA

Once the analytical solutions of a given type of motion have been
determined, the parameters of the solution may be found for a particular
missile by fitting the curves to experimental data. This is best accom-
plished by a curve-fitting method such as a least-squares technique.
There are times, however, when a quick estimation of the stability param-
eters is desirable. In this section a method of rapidly estimating the
parameters My and M; from a knowledge of the frequency and amplitudes
of the motion will be demonstrated.

Expressions of the type shown by equations (76) and (T79) have been
shown to represent the frequency of motion as a linear function of
My, My, and o2 over nearly the entire range of frequency values. These
expressions give a very convenient as well as accurate relation between
the parameters M, and M. The linearity and simplicity of equations (76)
and (79) suggest the possibility of solving for M; and M, simultaneously
from two independent equations such as these. Equations (76) and (79) are
stated here for the cases they represent (small values of obz/om?)-

Cases 1 and 2:

2 _ 0o°

O ww =
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Case 3:
2 = { N + S 2
Wa 1.10 MO + 1. L 1 5 Oy’ Ml

Similarly, equation (75) would give a better approximation for large values
of 0'02/0'm2-

The two independent simultaneous equations required for the determi-
nation of M, and M; may be found from the data of two independent
experimental runs under like conditions. The value of My, however, is
given by the expression

-+ B
Mo = Mo +

where P 1is the gyroscopic spin.

In order for ﬁb to have the same value in each of the two simui-
taneous equations, P2/4 must be the same in each run or clce it must be
negligibly small compared to Mp. A third more general alternative is
that the gyroscopic spin be known for each run. For this case, a known

value of Pz/h is merely added to each equation and My replaces My
as the second unknown.

A word should also be included on the effect of damping in the system.
The analytical section on damping in this paper demonstrates that the
values My, My, op, and oo should be replaced by the analogous values
M, - (Hg/hs, My, I'm, and Iy when there is damping in the system. The
effect of damping on the frequency over a short trajectory will be
negligible.

This method will be demonstrated by applying it to two runs, A and B,
from the Ames supersonic free flight wind tunnel. The resultant amplitudes
of these two runs are shown in figures 9 and 10. The free-stream Mach
number was 9.6. The estimated quarter wave lengths and the maximum and
minimum amplitudes are shown below.

Run A Run B
om = 4.35° om = 6.25°
oo = 0° oo = 0.75°
ML = Lol in. AMb = 31k 4in.

The gyroscopic spin in both runs was unknown, but since the models were
axially symmetric and were sabot-launched from a smooth-bore gun, it was
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assumed to be negligible. The damping was assumed to be negligible at
the outset since the trajectories were so short. The validity of these
assumptions would be tested by the quality of the fitted curves.

Since the particular type of nonlinear pitching and yawing moment
was not known for this model, equation (76) was first used, and the model
was found to come under Case 3; that is, the moment was initially unstable,
but became more stable with increasing amplitude. This new knowledge and
equation (79) were applied to the two cases, and the simultaneous equations
were

i

Run A 0.00308 = 1.10TMy + 0.00831M,

Run B 0.00762 = 1.107TM, + 0.01734M; /

from whence the values of M, and M; were calculated to be

¥

My = 0.237

)]

-0.000472

The moment curve corresponding to these coefficients is given in figure 11,
and it shows a very pronounced degree of nonlinearity. The quarter wave
lengths for these values of Eb and M; were checked by substituting these
values of Mo and M; into the exact equation (30). The checked values

of M4 for runs A and B, respectively, were 41.03 feet and 26.04 feet,
showing the value of the approximate equation (79).

The amplitude curves were calculated using equations (25) and (28)
and are compared with the experimental data and with the amplitude curve
that would be produced by a linear moment with the same frequency in
figures 9 and 10. The fit shown in figure 9 for run B is shown to be
excellent, and the comparison with the linear curve illustrates the
possible discrepancies that can be found when a linear moment is assumed
for the system. Figure 10 also illustrates this, although the fitted
cubic curve does not fit the data as well in this run as it does for run B.
The fitted curve for run A, however, is within the accuracy of the data.
A possible reason for this discrepancy between the data and the fitted
cubic curve is that the wave length is not distinctly shown in run A as
it was in run B. Since run A was planar, however, a faired curve through
the data could be extended through o = 0, and A/4 could be estimated.

It was estimated for several different fairings, and the best value was
demonstrated in this paper.
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The quality of these two fits would lead one to believe that the
damping was small. A run of a longer trajectory would have to be made to
verify this. The method as it stands, however, illustrates a rapid tech-
nique for estimating the cubic moment coefficients from observations of

the wave length and maximum and minimum pitching amplitude when two runs
are availlable.

Ames Research Center
National Aeronautics and Space Administration
Moffett Field, Calif., Oct. 12, 1959
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APPENDIX A
SERIES EXPANSION OF THE FREQUENCY EQUATIONS

The equation for the frequency of motion for Cases 1l and 3 is given

by equation (73)
2
M&Om? <é + EQ;) +1
Mo O

we® _ 2 (A1)
M, L K(k1)

The complete elliptic integral of the first kind may be expanded in
the following series:

mm__[1+(>ﬁ ( >k4 G35 p+...J (22)

and for k% < 1/2, a sufficient approximation may be made by retaining
only the first two terms. Thus

K(k) =3 <l + % k2> (A3)

The modulus k12 may be expressed as

a
1--—°E
o
2 m
kl= > —
0o Mo
2+'_2+ 5
Oy M;on
so that equation (3) may be written
5 —
1_002 9+3£O_2+)+MMOZ
o
K(ky) = Z3 (% + )= zi m 1w (Al)
2L e W, | ° w2 Yo
2+ 25 + 2 + 25+ =
O M1on> Om' My om

Substituting expression (4) into equation (Al), the new expression becomes

Www
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[Ml"mz R <1 » ) e 1T
2
we® _ 16 170 T (45)
Mo (:6 Mm_z +3 (_02;> Midm2 . ’-I-:r
o=/ Mo

Dividing denominator into numerator, equation (45) becomes

we? 3 43 (? + Eéf) Miow? —§-<? - 293>2<¥1qmé>2 + (A6)
Mo 2 o/ Mo 16 o/ \ Mo

It can be seen from figure 3 that expression (A6) is a good approximation
for Case 1 when only the first two terms are used. The first two terms
are also a good approximation for Case 3 when o2/op2 > 1/2 as is seen
in figure 5. For values of oba/om? near zero, however, the linear
segment of the curve approaches the value

_ s 0.2
weZ = 1.107M, + l.hjb'(% + ;gé>Mle? (A7)
m

Expression (A7) was determined by measuring the slope of the linear segment
of the 0g2/op2 = O curve in figure 5.

The series expansion for Case 2 may be found in a manner analogous
to that of Cases 1 and 3. Equation (A3) will again be used as an approxi-
mation to the complete elliptic integral of the first kind. For Case 2,
however, the modulus kg2 1s expressed as

-3
Y O™

N 2 2
Myom™ <1+2592->+1
M, o

k22 =

Substituting this velue into equation (A3), the expression may be written

M; o 0 L

Substituting this value into eguation (79) the equation for the frequency
becomes
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3
[Mlcm Ql + 2°°> + l:’
W 2 2

—=£ =16 (A8)

* o [aElesE) ]

and if the denominator is divided into the numerator by term, equation (A8)
may be written in series form as

“’_ =14+ 2 <l + —2-> My o 16 < - GOZ) <M10m> . (89)

The first three terms of this series are exactly the same as were obtained
for the first three terms of the series for Cases 1 and 3. It may also be
seen that only the first two terms of equation (A9) describe the linear
segments of the curves in figure k4.

Vww e
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Figure 2.- Wave-length parameter as a function of amplitude ratio for Case 2.
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Figure 3.- Frequency parameter versus amplitude parameter for Case 1.
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Figure 5.- Frequency parameter versus amplitude parameter for Case 3.
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Figure T.— Polar rotation for a quarter period for Case 2.
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Figure 8.- Polar rotation for a quarter period for Case 3.
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